Molecular dynamics simulations of heat conduction in multi-walled carbon nanotubes

نویسندگان

  • Guo-Jie Hu
  • Bing-Yang Cao
چکیده

Heat conduction in multi-walled carbon nanotubes (MWNTs) was studied using non-equilibrium molecular dynamics simulations. This research focuses on the effects of the multi-wall structure of the MWNTs on the heat conduction. The results show that the thermal conductivity of a MWNT is almost the same as that of the corresponding single-walled carbon nanotubes (SWNTs) rather than much smaller as has been suggested. Thus, the multi-wall structure does not significantly affect the thermal conduction in the MWNTs. Analysis of the temperature profiles and the phonon density of states confirms that there is almost no heat transport between the MWNT layers and that each layer conducts heat nearly independently along parallel channels. This is physically reasonable since the weak inter-wall interactions and large interfacial thermal resistances make the MWNT layers behave like parallel thermal circuits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffusive-Ballistic Heat Conduction of Carbon Nanotubes and Nanographene Ribbons

Investigations of diffusive-ballistic heat conduction of finite-length single-walled carbon nanotubes and nanographene ribbons at room temperature have been carried out by using nonequilibrium molecular dynamics simulations. The length dependences of thermal conductivity reveal the variation of the balance between ballistic and diffusive heat conduction. For both systems, the profile indicates ...

متن کامل

Heat Conduction of Single-walled Carbon Nanotube in Various Environments

Some of our recent studies on the heat conduction of single-walled carbon nanotubes (SWNTs) using molecular dynamics (MD) simulations are reported. The length-dependence of pure SWNTs is investigated in a range of nanotube lengths up to 3.2μm. Non-equilibrium MD simulations were performed by minimizing the thermal boundary resistance between the thermally controlled layers and the rest of the n...

متن کامل

Molecular Dynamics of Diffusive-Ballistic Heat Conduction in Single-Walled Carbon Nanotubes

Diffusive-ballistic heat conduction of finite-length single-walled carbon nanotubes has been studied by means of non-equilibrium molecular dynamics simulations. The length-dependence of thermal conductivity is quantified for a range of nanotube-lengths up to a micrometer at room temperature. A gradual transition from nearly pure ballistic to diffusive-ballistic heat conduction was identified fr...

متن کامل

Molecular Dynamics Investigation of The Elastic Constants and Moduli of Single Walled Carbon Nanotubes

Determination of the mechanical properties of carbon nanotubes is an essential step in their applications from macroscopic composites to nano-electro-mechanical systems. In this paper we report the results of a series of molecular dynamics simulations carried out to predict the elastic constants, i.e. the elements of the stiffness tensor, and the elastic moduli, namely the Young’s and shear mod...

متن کامل

Anisotropic Heat Transfer of Single-Walled Carbon Nanotubes

Heat transfer of single-walled carbon nanotubes (SWNTs) in practical situations is investigated using molecular dynamics (MD) simulations. Attenuation of the expected high thermal conductivity was simulated by mixing C isotope impurities to SWNTs or binding two SWNTs with different chirality with a junction structure in between. The heat transfer through the junction can be expressed with the t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012